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Abstract— Blind image quality assessment (BIQA) aims to
evaluate the perceptual quality of a distorted image without
information regarding its reference image. Existing BIQA models
usually predict the image quality by analyzing the image statistics
in some transformed domain, e.g., in the discrete cosine transform
domain or wavelet domain. Though great progress has been
made in recent years, BIQA is still a very challenging task
due to the lack of a reference image. Considering that image
local contrast features convey important structural information
that is closely related to image perceptual quality, we propose
a novel BIQA model that utilizes the joint statistics of two
types of commonly used local contrast features: 1) the gradient
magnitude (GM) map and 2) the Laplacian of Gaussian (LOG)
response. We employ an adaptive procedure to jointly normalize
the GM and LOG features, and show that the joint statistics
of normalized GM and LOG features have desirable properties
for the BIQA task. The proposed model is extensively evalu-
ated on three large-scale benchmark databases, and shown to
deliver highly competitive performance with state-of-the-art
BIQA models, as well as with some well-known full reference
image quality assessment models.

Index Terms— Blind image quality assessment, gradient
magnitude, LOG, jointly adaptive normalization.

I. INTRODUCTION

V ISUAL signals play a profound role in our commu-
nication and interaction with the surrounding world.
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With the rapid development of digital imaging and network
technologies, billions of digital images are available on the
internet, and the number of people that share pictures on
social network websites continues to increase. Indeed, it is
estimated that by 2015 consumers in the U.S. will capture
more than 100 billion digital pictures annually [1]. Since a
variety of image distortions can be introduced during image
acquisition, compression, transmission, and storage, etc., the
output images may be unsatisfactory in terms of subjective
quality. This is particularly true for images captured under
less than ideal conditions and by low end devices such as
smartphone cameras. A quantitative index on the perceptual
quality of images is highly desirable for evaluating practical
systems, benchmarking image processing algorithms, design-
ing imaging systems, and monitoring image acquisition
and transmission [2]. Thus, research on image quality
assessment (IQA) has been extensively conducted for decades.
In applications where information regarding the reference
image and the distortion process is not available, the
development of general purpose blind IQA (BIQA) models
has become an important yet very challenging problem.

When a natural image is distorted with a known
procedure, the introduced distortions can be made measure-
able using some specific features. For example, blur can be
measured by edge width in the spatial domain [3] or kurtosis
in some transformed domain [4]; blockiness introduced by
JPEG/JPEG2000 compression can be quantified by statistical
differences between adjacent pixels or by the zero-crossing
rate around block boundaries [5]. Most of these models
have been proposed to deal with a single given distortion
type and they are usually referred to as distortion specific
IQA models [6]. When a natural image is distorted via
unknown distortion channels, the corresponding quality pre-
diction problem becomes distortion-agnostic, and it becomes
much more difficult to find specific features to measure the
image quality. Fortunately, in the past two decades numerous
studies have shown that high quality natural images exhibit
statistical regularities [34]. When the image structures are
distorted or damaged, the image statistics will be changed
accordingly, making the inference of image perceptual quality
possible. The quality can be measured by directly computing
the distance between the statistics of high quality natural
images and distorted images [7]. However, such an unsuper-
vised BIQA model learning approach often cannot deliver

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

www.Matlabi.ir 

www.Matlabi.ir 
http://www.matlabi.ir


XUE et al.: BIQA USING JOINT STATISTICS OF GM AND LAPLACIAN FEATURES 4851

high quality prediction accuracy. Alternatively, supervised
BIQA model learning can help to bridge the semantic gap
between image statistics and image perceptual quality. Most
modern BIQA methods [8]–[12], [14]–[16] are based on the
supervised learning principle, while their differences mainly
lie in what statistics are employed.

Moorthy et al. [8] trained a support vector machine (SVM)
[17] to detect image distortion types using statistical models
of wavelet coefficients, and then trained a support vector
regression (SVR) model [17] to predict the perceptual severity
of each distortion type. A similar distortion identification
and quality prediction framework is employed in [16],
where the features are extracted in the wavelet domain.
Saad et al. trained a probabilistic model based on contrast
and statistical features such as kurtosis and anisotropy in the
DCT domain [9], [15]. In [10], three sets of statistical features
are extracted from complex wavelet transform coefficients, and
then three regression models are trained on each feature set.
A weighted combination of the three regression models is
used to estimate image quality. In [12], a sparse representation
based classifier originally developed for face recognition [13]
is used to infer image quality scores. A summary of commonly
used statistical features and regression algorithms for BIQA
can be found in [18]. Almost all these methods follow a
two stage framework: statistical feature extraction, followed
by regression model learning from subjective human scores.1

The most widely used regression algorithm is SVR with a RBF
(radial basis function) kernel. The natural scene statistic (NSS)
features that are employed in these BIQA models are mainly
derived from the statistical distributions (histograms) of image
coefficients in some bandpass transformed domain. The model
parameters of best-fitted distributions (e.g., Laplacian, general-
ized Gaussian) to bandpass image coefficients are widely used
as quality-predictive features.

Since natural images are high dimensional signals that
contain a rich amount of redundancies, the extraction of
statistical features may be viewed as a process of removing
the redundancies to reveal the low dimensional manifold space
of image perceptual quality. Complementary to distribution-
based statistical description of natural images, the elementary
structures of natural images can be reflected in the receptive
field of retinal and cortical neurons [21]. Indeed, the principal
components of natural images strongly resemble the direc-
tional derivatives of 2D Gaussian functions [19]. The work
on independent components based image analysis [20] has
revealed that the diverse scale- and orientation- sensitivities
of retino-cortical receptive fields can also be closely modeled
by Gaussian derivative functions. The work of Field and
Olshausen [21] validates that natural images can be sparsely
expanded over an overcomplete set of simple atoms. This
finding also accounts for the ‘sparsity prior’ of bandpass image
coefficients.

Image luminance changes convey most of the meaning-
ful information of an image. Bandpass image responses,

1Strictly speaking, learning an IQA model from a training dataset with
certain types of distortions cannot be said as a truly “blind” method.
Considering that the majority of such methods in literature (see [8]–[10], [12],
[15], [16]) are called as BIQA methods, we follow this naming in this paper.

in particular Gaussian derivative responses, can be used to
characterize various image semantic structures, such as lines,
edges, corners, and blobs, etc., which closely relate to human
subjective perception of image quality. Many models have
been proposed to extract and analyze these kinds of ‘singular’
structures in natural images, such as the Gaussian smoothed
gradient magnitude [23], Laplacian of Gaussian (LOG) oper-
ator [22], discrete wavelet transform (DWT) [24], discrete
cosine transform (DCT) [25], first-order Markov models [36],
partial differential equations (PDE) [27], and so on.

While many BIQA models use DCT, DWT and other
multiscale bandpass transforms to de-correlate images, some
state-of-the-art full/reduced reference IQA models [28]–[33]
rely on local spatial contrast features, e.g., the gradient mag-
nitude (GM) and the LOG to predict image quality. These
two types of features share the common property that they are
computed using isotropic differential operators, i.e., without
angular favor. LOG filters have a center-surrounded profile
that is symmetrically sensitive to intensity changes across all
orientations, while GM features reflect the maximum intensity
variation regardless of orientation. To the best of our knowl-
edge, no existing general purpose BIQA models have explicitly
made use of these Gaussian derivative features, despite their
physiological similarities to the receptive field responses of
neurons along the visual pathway. One possible exception
is BRISQUE model [14], which computes center-surrounded
mean-subtracted contrast normalized (MSCN) coefficients as
features. Such features can be viewed as simplified LOG
response signals with contrast masking. However, BRISQUE
does not utilize the complementary GM-like features.

By contrast with existing NSS-based BIQA models,
here we show that low-order Gaussian derivative operators,
exemplified by GM and LOG, can be employed to develop
high performance BIQA models. The GM and LOG features
can be used to build the basic elements (i.e., local contrast) of
image semantic structures, and they are hence closely related
to the perceptual quality of natural images. The LOG operator
responds to intensity contrast in a small spatial neighborhood,
and it is a good model of the receptive field of retinal ganglion
cells [22], [34]. The GM feature measures the strength of local
luminance change. A contour formed by the locally maximum
GM pixels may be regarded as an image edge profile. The
GM and LOG features also align with the classical ‘edge’ and
‘bar’ types of features described in [35], which resemble the
independent components (IC) of natural images. Rather than
computing expensive IC-based NSS features, we use the easy-
to-compute GM and LOG features to perform BIQA tasks.
Indeed, such low-order Gaussian derivative operators
have been employed in many computer vision applications,
including, for example, the Harris corner detection [47], the
SIFT/SUFR [48], [49] operators for object matching, and
the HOG [50] features used for human detection, to name
a few. The effectiveness of these Gaussian derivative based
features in the above applications motivated us to introduce
them into the task of BIQA.

The novelty of our work lies in that we propose to
use the joint statistics of simple GM and LOG features
for BIQA model learning. In particular, we propose the
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joint adaptive normalization (JAN) operation to boost the
performance of GM and LOG features on image quality
prediction, and introduce the dependency index to describe
the interaction between them and to refine the GM and
LOG joint statistics. Our work is the first attempt to use
simple LOG and GM features to conduct BIQA and it achieves
leading performance in terms of quality prediction accuracy,
distortion robustness and database generalization.

The rest of the paper is organized as follows. Section II
presents in detail the features we used and the proposed
methodology. Section III conducts extensive experiments to
validate the proposed BIQA models. Section IV concludes
the paper.

II. METHODOLOGY

As discussed in the Introduction section, GM and
LOG features are basic elements that are commonly used to
form image semantic structures. As we will see, they are also
strong features to predict image local quality. In this section,
we show how the joint statistics of GM and LOG can be
adapted to the BIQA problem.

A. Gradient Magnitude (GM) and
Laplacian of Gaussian (LOG)

Luminance discontinuities convey most of the structural
information of a natural image, and they can be effectively
detected from the responses of the GM and LOG operators.
Denote by I an image. Its GM map can be computed as

G I =
√

[I ⊗ hx ]2 + [
I ⊗ hy

]2
(1)

where “⊗” is the linear convolution operator and hd ,
d ∈{x , y}, is the Gaussian partial derivative filter applied
along the horizontal (x) or vertical (y) direction:

hd(x, y|σ) = ∂

∂d
g(x, y|σ)

= − 1

2πσ 2

d

σ 2 exp

(
− x2 + y2

2σ 2

)d∈{x,y},

(2)

where g(x, y|σ) = 1
2πσ 2 exp

(
− x2+y2

2σ 2

)
is the isotropic

Gaussian function with scale parameter σ . The LOG of
image I is:

L I = I ⊗ hL OG , (3)

where

hL OG(x, y|σ) = ∂2

∂x2 g(x, y|σ) + ∂2

∂y2 g(x, y|σ)

= 1

2πσ 2

x2 + y2 − 2σ 2

σ 4 exp

(
− x2 + y2

2σ 2

)
.

(4)

Filter templates of hx , hy , and hL OG are displayed in Fig. 1.
The empirical marginal distributions of GM features of

natural (photographic) images can be modeled as obey-
ing a Weibull distribution [36], while those of LOG
responses can be well modeled as following a generalized

Fig. 1. The templates used for computing the GM and LOG responses.

Gaussian distribution [37]. Fig. 2 shows two natural images
with different contents and a blurred chessboard image with
contrast increasing linearly from top-left to bottom-right.
The (cropped and zoomed) GM and LOG feature maps
and their empirical distributions for the three images are
depicted in the middle column of Fig. 2. For the first image
Houses, there are many large GM coefficients and strong
LOG responses, while for the second image Hats, there
are many fine-texture induced small GM coefficients and
LOG responses. Although both images are of high quality,
they have very different GM and LOG distributions, implying
that it is difficult to directly use the GM and LOG statistics for
BIQA tasks. On the other hand, for the simulated chessboard
image, the distributions of its GM and LOG features are
rather similar to those of image Hats. Therefore, we can
draw the conclusion that the marginal distributions of GM and
LOG features are not stable statistical features for BIQA.

B. Joint Adaptive Normalization

GM and LOG operators could remove a significant amount
of image spatial redundancies, whereas certain correlations
between neighboring pixels will remain. This is also true for
other bandpass feature extraction methods such as wavelet
transform [38], DCT [15], MSCN [14], etc. To further remove
local correlations, adaptive gain control [40] or divisive
normalization models [38], [39] have been developed, both
aiming to model nonlinear cortical function and to con-
duct objective IQA. Generally speaking, these techniques
decompose an image into channels of different frequencies and
orientations, then normalize each coefficient by the average
energy over a local neighborhood centered at the current coef-
ficient. Such a divisive normalization process can effectively
whiten the coefficients and remove local contrast variations,
resulting in a stable statistical image representation.

We decompose each image into just two channels, the
GM channel and the LOG channel. As in [38] and [39], we
propose to normalize the GM and LOG coefficients to obtain
stable statistical image representations. Unlike [38], [39],
where normalization is applied individually to each channel of
different orientation and frequency, here we normalize jointly
the GM and LOG channels. Let

F I (i, j) =
√

G2
I (i, j) + L2

I (i, j). (5)

Then a locally adaptive normalization factor is computed at
each location (i , j):

N I (i, j) =
√∑ ∑

(l,k)∈�i, j
ω(l, k)F2

I (l, k), (6)
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Fig. 2. The GM and LOG maps as well as their marginal distributions before (middle column) and after (right column) joint adaptive normalization.
(a) Houses; (b) Hats; and (c) Chessboard.

Fig. 3. Profile of GM and LOG signals along the three lines (highlighted in red) A, B and C in (a). (b) and (d) Show the GM and LOG profiles before
JAN, while (c) and (e) show the corresponding profiles after JAN.

where �i, j is a local window centered at (i , j), ω(l, k) are
positive weights satisfying �l,kω(l, k) = 1. In our implemen-
tation, we set ω(l, k) to be a spatially truncated Gaussian
kernel rescaled to unit sum. The GM and LOG feature maps
are normalized as:

Ḡ I = G I
/
(N I + ε), (7)

L̄ I = L I
/
(N I + ε), (8)

where ε is a small positive constant to avoid numerical insta-
bility when N I is small. We call the above normalization
procedure joint adaptive normalization (JAN).

Generally speaking, the JAN process will not change image
semantic structures because it only adjusts the local image
contrast scale. The benefit of JAN lies in the fact that it makes
the local contrast scales of GM and LOG maps consistent

across the image, and thus removes the uncertainties caused
by illumination changes, varying magnitudes of edges and
other structures, etc. The right column of Fig. 2 shows the
GM and LOG maps of the three images after JAN. The mar-
ginal distributions of the corresponding GM and LOG maps
are also shown. After JAN, the GM and LOG maps become
more stationary across the whole image. The GM distributions
of the two natural images Houses and Hats become very
similar after JAN, though their contents are very different.
So do their LOG distributions. However, for the artificial
image Chessboard, the GM and LOG distributions after JAN
become very different from those of the natural images Houses
and Hats.

Let’s examine more carefully how JAN adjusts the statistics
of GM and LOG maps by taking image Hats as an example.
Fig. 3(b) and 3(d) plot the GM and LOG profiles of three edges
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Fig. 4. A step edge signal (top row) and its two Gaussian noise corrupted
versions (middle two rows) and two DCT compressed versions (bottom two
rows). From left column to right column: step edge signals, their GM and
LOG responses, and scatter plots of GM (x-axis) versus LOG (y-axis).

(highlighted by red lines in the zoomed patches) before JAN,
respectively, while Fig. 3(c) and 3(e) plot these profiles after
JAN. Clearly, after JAN the differences between the profiles
of the three edges are much reduced, and they tend to have
more similar shapes and scales. The JAN operation reduces
the dependency of image statistics on local image content.

C. Statistical Feature Description

The GM and LOG features describe local image structures
from different aspects, and the interaction between them can
play an important role in predicting perceptual image quality.
Let us use an example to investigate the interaction between
GM and LOG. The first column of Fig. 4 shows a step edge
signal and several of its distorted counterparts: two Gaussian
noise corrupted versions and two DCT compressed (quantized)
versions. The second and third columns show the GM and
LOG responses to the original and distorted step edges, while
the right column of Fig. 4 shows the scatter plots of GM vs.
LOG. Although distortions of the step edge can be reflected
in the GM and LOG features, the GM-LOG scatter plot can
better describe the signal distortions. The scatter plot of the
original step signal is very smooth and regular. When the
step edge is distorted, the shape of the scatter plot changes
accordingly. The more severe the distortion is, the greater the
change will be in the scatter plot. In addition, the change in
shape of the scatter plot caused by Gaussian noise corruption
is very different from that caused by DCT compression. More
specifically, the scatter plots of the GM and LOG responses
to the DCT compressed step edge are more regular than those
of the noise corrupted ones. The above observations inspire
us to explore the interaction between GM and LOG and use
it to conduct BIQA.

After applying JAN to the GM and LOG features, the
joint empirical distribution of Ḡ I (i, j) and L̄ I (i, j) can be
computed and used to learn a prediction model. We quantize
Ḡ I (i, j) into M levels {g1, g2, . . . , gM} and L̄ I (i, j) into
N levels {l1, l2, . . . , lN }. For conciseness of notation, we
denote Ḡ I (i, j) by G and denote L̄ I (i, j) by L. The joint

Fig. 5. Marginal probabilities PG (shown as the first half of the histograms)
and PL (shown as the second half of the histograms) of the distorted images
generated from the same reference image at different DMOS levels. The
images are from the LIVE database [41], which has five types of distortions:
JP2K compression, JPEG compression, white noise (WN), Gaussian blur (GB)
and fast fading (FF).

empirical probability function of G and L can be denoted by

K m,n = P(G = gm, L = ln), m = 1, . . . , M; n = 1, . . . , N.

(9)

In other words, Km,n is the normalized bivariate histogram of
G and L. Although Km,n contains a rich amount of statistical
information regarding Ḡ I (i, j) and L̄ I (i, j), it has a high
dimensionality (M × N).

Instead of using Km,n to learn the prediction model, it is
desirable to extract a smaller set of quality-predictive features
from Km,n for this task. Intuitively, the marginal probability
functions of Ḡ I (i, j) and L̄ I (i, j), denoted by PG and PL ,
respectively, are straightforward choices:

{
PG(G = gm) = ∑N

n=1 Km,n

PL(L = ln) = ∑M
m=1 Km,n.

(10)

Because of the JAN process, the marginal probability func-
tions PG and PL of natural images with different contents
will have similar shapes. However, when a natural image is
distorted, the shapes of its PG and PL will deviate from those
of high quality natural images. Fig. 5 shows the marginal prob-
ability functions of the distorted images of a reference image
from the LIVE database [41]. To better illustrate how the
marginal distributions vary with the degree of degradation, we
plot the histograms of PG and PL across various DMOS (Dif-
ference Mean Opinion Score) levels. It can be seen that PG and
PL gradually change with the increase of distortion level. This
suggests that the shapes of PG and PL are predictive of image
quality.

The marginal probability functions PG and PL , however, do
not capture the dependencies between GM and LOG. If the
GM and LOG features of an image are independent, then
K m,n = PG(G = gm) × PL(L = ln) for all m and n. We can
define the following index to measure the dependency between
GM and LOG:

Dm,n = K m,n

P(G = gm) × P(L = ln)
(11)
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Fig. 6. Independency distribution between normalized GM and LOG features for images of (a) H ouses, (b) H ats, and (c) Chessboard.

If the GM and LOG features of an image are independent,
then Dm,n =1 for all m and n. In practice, the GM and LOG
features will have certain dependencies and Dm,n will take
values other than 1. Directly computing and using Dm,n as
a feature set for BIQA is not a good choice since it has the
same dimension as that of Km,n . Instead, we can compute the
dependency of each specific value G = gm against all possible
values of L. Using the marginal probability P(G = gm)
as a weight, define the following measure of the overall
dependency of G = gm on L:

QG(G = gm) = P(G = gm) · 1

N

∑N

n=1
Dm,n . (12)

Similarly, define the following measure of the overall depen-
dency of L = ln on G:

QL(L = ln) = P(L = ln) · 1

M

∑M

m=1
Dm,n . (13)

It is easy to prove that QG ≥ 0 and QL ≥ 0, and �m QG(G =
gm) = �n QL(L = ln) = 1. Therefore, they can be viewed
as probability distributions in some sense, and we call them
independency distributions.

Then QG and QL can be re-written as:

QG (G = gm) = 1

N

∑N

n=1

P(G = gm, L = ln)

P(L = ln)

= 1

N

∑N

n=1
P(G = gm |L = ln), (14)

QL(L = ln) = 1

M

∑M

m=1

P(G = gm, L = ln)

P(G = gm)
.

= 1

M

∑M

m=1
P(L = ln|G = gm) (15)

From (14) and (15), one can see that the proposed dependency
measure can be viewed as the sum of conditional probabilities
of a specific value of G (or L) over variable L (or G).
It describes the statistical interaction between normalized GM
and LOG features. Fig. 6 plots the distributions of QG and
QL for images Houses, Hats and Chessboard. The QG and
QL of the artificial image Chessboard is remarkably different
from those of the natural images Houses and Hats, whereas
the QG and QL of Houses and Hats are quite similar. Fig. 7
plots the QG and QL of the same distorted images used in
Fig. 5. One can see that QG and QL gradually change with
the degree of distortion, as can be observed in Fig. 5 for the
marginal distributions PG and PL .

Fig. 7. The independency distributions QG (shown as the first half of the
histograms) and QL (shown as the second half of the histograms) of the
distorted images of a reference image at different DMOS levels. The images
are from the LIVE database [41].

D. BIQA Prediction Model Learning

Based on the analyses in Section II.C, we know that
the marginal distributions PG and PL and the independency
measures QG and QL are closely related to the severity of
distortions of natural images. We shall use them as statistical
features to learn prediction models (i.e., regression models) for
BIQA. To more comprehensively evaluate the effectiveness
of the proposed statistical features, we learn three models
by using different feature sets. In the 1st model, denoted
by M1, we use only the marginal distributions PG and PL

to learn the quality prediction model; in the 2nd model,
denoted by M2, we use only the dependency measures QG

and QL to learn; in the 3rd model, denoted by M3, we
use all statistical features PG , PL , QG and QL to learn the
model.

Given the features and the DMOS scores of training images,
we learn a regression function to map the features of an image
to its DMOS score. The support vector regression (SVR)
technique [17] is widely used to learn such regression
functions [8]–[10], [14]–[16]. In this paper the ε-SVR [17] is
employed for regression model learning. Given training data
{(x1, y1), . . ., (xk , yk)}, where xi , i = 1, . . ., k, is the feature
vector and yi is the DMOS score, we aim to find a function
to predict the score from the input feature vector: f (x) =
〈ω, x〉 + b, where 〈·,·〉 denotes the inner product, ω is the
weight vector, and b is a bias parameter. With the constraint
of flatness (small ω) and by introducing the slack variables ξi

and ξ∗
i , ω and b can be computed by solving the following
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optimization problem [17]:

minimize
1

2
‖ω‖2 + C

k∑

i=1

(ξi + ξ∗
i )

subject to

⎧
⎨
⎩

〈ω, xi 〉 − (yi − b) ≤ ε + ξi

yi − b − 〈ω, xi 〉 ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0,

(16)

where C is a the constant parameter to balance ω and the
slack variables. The minimizer of Eq. (16) is given by [17]:
ω = �k

i=1ti xi , where ti is the combination coefficient.
Usually, we first map the input feature vector into a high

dimensional feature space 
(x), and then learn the regression
function:

f (x) =
〈∑k

i=1
tiΦ(xi ),Φ(x)

〉
+ b

=
∑k

i=1
ti 〈Φ(xi ),Φ(x)〉 + b. (17)

The inner product 〈Φ(xi ), Φ(x)〉 can be written as a kernel
function k(xi , x), and Eq. (17) becomes

f (x) =
∑k

i=1
ti k(xi , x) + b. (18)

Introducing the kernel function k(xi , x) makes the fea-
ture mapping implicit. The radial base function (RBF)
k(xi , x) = exp(−γ (|xi − x |)2) is often used as the kernel
function, where γ is the precision parameter. More details of
SVR can be found in [17].

III. EXPERIMENTAL RESULTS

A. Databases and Evaluation Protocols

The performance of BIQA models can be evaluated by
using subjective image databases, where each image has been
scored by human observers. (Difference) Mean Opinion Scores
(DMOS/MOS) are usually recorded to describe how closely
the predicted image quality scores by a BIQA model correlate
with human judgments. Several subjective image quality eval-
uation databases have been established in the IQA community.
Here we use the three largest and mostly widely used ones: the
LIVE database [41], the CSIQ database [42] and the TID2008
database [43].

The LIVE database consists of 779 distorted images, gener-
ated from 29 original images by processing them with 5 types
of distortions at various levels. The distortions involved in
the LIVE database are: JPEG2000 compression (JP2K), JPEG
compression (JPEG), additive white noise (WN), Gaussian
blur (GB) and simulated fast fading Rayleigh channel (FF).
These distortions reflect a broad range of image impairments,
such as edge smoothing, block artifacts, image-dependent
distortions, and additive random noise. The CSIQ database
consists of 30 original images and their distorted counterparts
with six types of distortions at five different distortion levels
each. The TID2008 database is composed of 25 reference
images and their distorted counterparts with 17 types of distor-
tions at four levels each. For the CSIQ and TID2008 databases,
we mainly consider the 4 common types of distortions that
appear in the LIVE database, i.e., JP2K, JPEG, WN, and GB.

Fig. 8. SRC values of the proposed model M3 under different numbers of
bins M = N = {5, 10, 15, 20}.

We also use all the 17 distortion types in TID2008 to examine
the generalization ability of BIQA models.

To evaluate the performance of a BIQA method, three
scores that measure the consistency between the results of a
BIQA model and the subjective DMOS/MOS scores are
generally used: the Spearman rank order correlation
coefficient (SRC), which measures the prediction monotonic-
ity; the Pearson correlation coefficient (PCC) and the root
mean squared error (RMSE), which measure the prediction
accuracy. Both SRC and PCC lie in the range [−1, 1]. A good
BIQA model should demonstrate a correlation coefficient with
the subjective DMOS/MOS scores as close to 1 (or −1) as
possible. The relationship between the subjective scores and
the predicted scores may not be linear due to the nonlin-
ear quality rating of human observers. As recommended by
the Video Quality Expert Group [44], a nonlinear logistic
regression could be built between the predicted scores and the
subjective scores when calculating the indices SRC, PCC and
RMSE. Denote by Q and Q p the predicted score before and
after regression, respectively. The logistic regression function
is defined as follows:

Q p = β1(
1

2
− 1

exp(β2(Q − β3))
) + β4 Q + β5, (19)

where β1, β2, β3, β4 and β5 are regression model parameters.

B. Implementation Details

When computing the GM and LOG maps, the scale parame-
ter σ of the filters hx , hy , and hL OG needs to be set. We set σ
to a small value 0.5 so that fine image details can be captured
in the GM and LOG feature maps. In the JAN process, the
weights ω(k, l) (refer to Eq. (6)) are generated by a Gaussian
kernel with scale 2σ .

When computing the joint probability Km,n , it is necessary
to set the number of bins. In general, using a larger number
of bins can lead to more accurate calculation of statistics,
but this requires more samples and makes the dimension
of the output features higher. For the task of image quality
prediction, the goal is to use as few features as possible to
achieve as high as possible prediction accuracy. Note that
if the feature dimension (i.e., the number of bins) is very
high, the regression model learning may become less stable.
To investigate the effect of the number of bins on the quality
prediction performance, we let M = N = {5, 10, 15, 20} and
compute the SRC values of the proposed scheme M3 on the
three IQA databases. The results are plotted in Fig. 8. We can
see that M = N = 10 leads to higher and more stable
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TABLE I

OVERALL PERFORMANCE OF THE COMPETING BIQA MODELS ON THE THREE DATABASES.

THE RESULTS OF PSNR, SSIM AND FSIM ARE ALSO LISTED FOR REFERENCE

Fig. 9. The SVR parameter (C , γ ) selection process for the proposed model M3 via grid search on databases LIVE (left), CSIQ (middle) and TID2008
(right). The number on the level contour indicates the SRC value of the cross-validation.

performance across all three databases. In all the following
experiments, we set M = 10 and N = 10, and thus all
the statistical feature vectors PG , PL , QG and QL are of
dimension 10.

When using the SVR to learn the regression models, the
SVR parameters (C , γ ) need to be set. We conducted a
cross validation experiment to choose the values of (C , γ ).
We partitioned each database into two non-overlapped sets: the
training set and the test set. More specifically, we randomly
selected 80% of the reference images (and their distorted
versions) as the training set and the rest as the test set. In this
way, we ensured that there was no content overlap between
the training set and the test set. Then the model learned from
the training set was examined on the test set. This overall
train-test procedure was repeated 1000 times, and the median
results were reported for performance evaluation. The (C , γ )
values delivering the best median result were chosen as the
parameter. Fig. 9 illustrates the parameter selection process
of the proposed model M3 on the three IQA databases. The
number on the level contour indicates the median SRC value
of the cross-validation. Note that we scaled the subjective
scores of CSIQ and TID2008 into the range of the DMOS
scores of LIVE. One can see that there exists a ribbon-
like region along the diagonal direction where M3 exhibits
the best SRC results on all three databases. This makes
the model learning more robust to database. The optimal
(C , γ ) were found to be (16384, 2), (16384, 2) and (128, 16)
on the LIVE, CSIQ and TID2008 databases, respectively.

We used them in the following experiments. The MATLAB
source code for the proposed methods can be downloaded at
http://ipl.xjtu.edu.cn/ftp/xqmou/GM-LOG-BIQA.zip.

C. Performance on Individual Databases

We compared the proposed BIQA models with rep-
resentative and state-of-the-art BIQA models, including
BIQI [8], BLIINDS2 [15], BRISQUE [14], DIIVINE [16] and
CORNIA [11]. The source codes for these competing methods
were obtained from the original authors. For fair comparison,
we also optimized the SVR parameters for these models by
grid search. In addition, the classic PSNR, the well-known full
reference IQA models Structural SIMilarity (SSIM) [45] and
FSIM [31] were also included in the comparison.

We first evaluated the overall performance of the competing
BIQA models on each of the three databases. The results
are listed in Table I. The top three BIQA models for each
index (SRC, PCC or RMSE) are highlighted in bold font.
Clearly, the proposed model M3, which employs both the
marginal probabilities and the dependencies of GM and LOG
features, performs the best consistently on all the databases.
The proposed models M2 and M1 also perform very well,
while M2, which employs the dependency between GM and
LOG, works slightly better than M1, which employs only the
marginal distribution of GM and LOG. This implies that the
dependency statistics contain more useful information than
the marginal statistics for the task of BIQA. The advantages
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Fig. 10. Results of one sided t-test conducted by using the SRC values of competing BIQA models. A value of ‘1’ indicates that the row model is statistically
better than the column model, a value of ‘−1’ indicates that the column model is statistically better, while a value of ‘0’ indicates that they are statistically
similar in performance.

Fig. 11. Results of the Wilcoxon rank-sum test by using the SRC values of competing BIQA models. A value of ‘1’ indicates that the row model is
statistically better than the column model; a value of ‘−1’ indicates that the column model is statistically better; and a value of ‘0’ indicates that the two
models are statistically similar in performance.

TABLE II

RANKING OF THE BIQA MODELS IN TERMS OF SRC

of the proposed models M3 and M2 over the other
BIQA models (except for BRISQUE) are significant on the
TID2008 and CSIQ databases. When compared with full
reference IQA models, the proposed model M3 shows clear
advantages over PSNR and SSIM, and only lags the perfor-
mance of FSIM a little. This is reasonable because FSIM is a
state-of-the-art full reference IQA method which employs the
reference image as input. In the two right most columns of
Table I, we show the weighted average SRC and PCC scores of
competing IQA methods over the three databases (the weights
are based on the numbers of images in the three databases).
(Note that the weighted average of RMSE scores cannot be
computed since the subjective scores scale differently in the
three databases.) We see that M3 still performs the best among
the BIQA methods in terms of weighted average SRC and PCC
scores, followed by M2 and BRISQUE.

In Table II, we rank the competing BIQA models in terms
of SRC on each database. The weighted ranking on the three
databases is also given. The proposed models M3, M2, and
M1 rank the first, the second and the fourth, respectively,

demonstrating that the joint statistics of GM and LOG features
are powerful predictors of natural image perceptual quality.

To determine whether the advantages of the proposed
method over competing methods are statistically significant,
two hypotheses tests were conducted: the one-sided t-test and
the Wilcoxon rank-sum test [46]. The one-sided t-test tests
the equivalence of the mean values of two samples drawn
from independent populations of a normal distribution. The
Wilcoxon rank-sum test tests the equivalence of the median
values of two independent samples and is a nonparametric
alternative to the two sample t-test. Both of the tests were
performed at a significance level of 0.01 using the 1000 SRC
values of all pairs of BIQA models. The null hypothesis
is that the SRC values of the pair of models are drawn
from populations with equal mean (t-test) or equal median
(Wilcoxon rank-sum test). The alternative hypothesis is that
the mean/median of one model is greater than the other.
Notice that for the t-test, two assumptions must be guaranteed:
independency and normality. The random split into training
and testing sets ensured the independency of these values.
The SRC values follow a right-skewed unimodal distribution.
To ensure the normality assumption, the SRC values were
firstly transformed by exponentiation [46], and then the t-test
was applied to these transformed SRC values.

The results of the two tests are illustrated in
Fig. 10 and Fig. 11, respectively. A value of ‘1’ indicates
that the row model is statistically better than the column
model, a value of ‘−1’ indicates that the column model is
statistically better, while a value of ‘0’ indicates that the
two models have no statistical difference in performance.
The two tests lead to nearly the same conclusions except for
the pair of CORNIA and BLIINDS2 on TID2008 database.
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TABLE III

PERFORMANCE (SRC) OF COMPETING BIQA MODELS ON INDIVIDUAL DISTORTION TYPES

Fig. 12. Median SRC values of 1000 runs on TID2008 database for BLIINDS2, BRISQUE and the proposed model M3. “ALL” means the overall performance
on the entire database.

On LIVE and CSIQ, M3 is statistically superior to all the
other models. On TID2008, M3 and BRISQUE have no
statistically significant difference, and both of them beat
the other methods. Overall, the proposed M1, M2, M3,
as well as the BRISQUE methods always perform better
than the other methods. Interestingly, they all use isotropic
IQA features. The proposed models use LOG and GM, while
BRISQUE uses the MSCN feature which is a simplified
version of the LOG response. However, the proposed models
exploit the dependency between the LOG and GM responses,
while BRISQUE utilizes the correlations between spatially
neighboring coefficients of the MSCN signal.

D. Performance on Individual Distortion Type
and Generalization Ability

We then tested the performance of the proposed BIQA
models on each type of distortion. The results are listed in
Table III. For brevity, we only present the SRC results. Similar
conclusions were arrived at for PCC and RMSE. The top
3 models are highlighted in boldface. At the bottom of the
table, the hit-count (i.e., the number of times ranked in the
top 3 on each distortion), the average performance (Mean),
and the performance standard deviation (STD) of each model
are listed. For the 13 groups of distortion types in the three
databases, the proposed model M3 had the highest hit-count
(i.e., 11 times), followed by BRISQUE (9 times), M2 (6 times)

and M1 (5 times). Meanwhile, the proposed models have very
high mean scores, and M3 has the smallest STD across all the
distortion groups.

To test the generalization ability of the proposed model with
respect to distortion types, we conducted further experiments
on the entire TID2008 database including all 17 distortions.
Since the proposed M3 makes use of GM and LOG features in
the luminance channel, it is not responsive to non-structural
distortions and distortions on chromatic components. There-
fore, we also conducted experiments on a subset of TID2008
which includes only achromatic-structural distortions (11 dis-
tortions included). More specifically, two color aberration
distortions (WNC, JGTE) and four non-structural distortions
(NEPN, BLK, MS, and CT) were removed from the subset.
(For more information about the distortions types, please refer
to [43]). The same train-test procedure as in previously experi-
ments was employed. Two representative methods, BRISQUE
and BLIINDS2, were used for comparison.

The experimental results are illustrated in Figs. 12 and 13,
respectively. When all 17 distortion types were involved,
M3 delivered better SRC values than its competitors
on 12 distortions, and showed clear advantage over the
competitors in terms of overall performance. However,
M3 failed to deliver good SRC values on chromatic distortions
(i.e., WNC and JGTE), while its competitors also faired poorly.
Low performance of M3 and its competitors can also be
observed on the non-structural distortions (NEPN, MS, CT,
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Fig. 13. Median SRC values of 1000 runs on the subset of achromatic-structural distortions (11 types in total) of TID2008 database for BLIINDS2, BRISQUE
and the proposed model M3. “ALL11” means the overall performance on this subset.

TABLE IV

PERFORMANCE (SRC) OF THE BIQA MODELS ACROSS THE THREE DATABASES

TABLE V

COMPUTATIONAL COMPLEXITY AND AVERAGE RUN-TIME (SECOND). N IS THE TOTAL NUMBER OF PIXELS IN A TEST IMAGE

etc.). On the achromatic-structural subset with 11 distortions,
M3 showed very good performance where it outperformed the
two competitors on all distortion types. In terms of overall
performance, M3 achieved an SRC value of 0.8501, while
BLIINDS2 and BRISQUE achieved only 0.7337 and 0.7551,
respectively. M3 demonstrated much higher generalization
ability for achromatic-structural distortions than the state-of-
the-art BLIINDS2 and BRISQUE models.

E. Experiments on Database Dependency

In the experiments in Sections III.C and III.D, the training
samples and test samples were drawn from the same data-
base. It is expected that the BIQA model learned from one
database should be applicable to images in other databases.
Therefore, to demonstrate the generality and robustness of a
BIQA algorithm, it is necessary to see if satisfying results
can still be obtained by applying the BIQA model learned
from one database to another database. In this subsection, we
conducted the following experiments. First, a BIQA model
was trained on database A, then the learned model was tested
on database B; next, the same BIQA model was trained
on database B, then tested on database A. With the three
databases, there were 6 combinations of training and test

database pairs. The SRC index was used for evaluation, and the
results are presented in Table IV. Again, the proposed model
M3 performed very well. It achieved the best SRC scores in
4 out of the 6 tests, and its results were very close to the best
results in the other 2 tests.

F. Computational Complexity

In many practical applications it is desired to estimate
the quality of an input image online. Therefore, the
computational complexity is also an important factor
when evaluating a BIQA model. Table V summarizes the
computational complexities and the run time (the average
processing time of an image from the LIVE database using
the MATLAB7.10.0 programming environment) of all the
competing BIQA models. One can see that BIQI is the fastest
one with complexity O(N), where N is the total number of
image pixels. However, its performance is the worst among all
the competing models. The proposed M3 is the second fastest
method. The main costs in M3 are spent on computing the
GM and LOG maps and the JAN of them, whose complexity
is O(Nh), and the computation of the joint probability matrix,
whose complexity is O(Nk), where h is the size of filters
hx , hy , and hL OG , and k is the size of the joint probability
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matrix. Hence, the overall complexity of M3 is O(N(h + k)).
On average, M3 can process 10 images from the LIVE
database per second using our MATLAB implementation.

IV. CONCLUSION

Existing BIQA models typically decompose an image into
different frequency and orientation bands, and then extract
statistical features from the decomposed coefficients to learn a
quality prediction model. However, few BIQA models explic-
itly exploit simple image contrast features such as the gradient
magnitude (GM) and Laplacian of Gaussian (LOG) responses,
although LOG responses share similarities to human recep-
tive field responses. Here we made the first attempt to use
GM and LOG features to conduct high performance BIQA.
To alleviate the effects of image content variations, we applied
a joint adaptive normalization procedure to normalize the
GM and LOG features and whiten the image data. Since
GM and LOG features are not independent and the interaction
between them can reflect local quality prediction on natural
images, we proposed a simple index, called independency
distribution, to measure the joint statistics of them. The
proposed BIQA models employ the marginal distributions and
the independency distributions of GM and LOG, and they lead
to highly competitive performance with many state-of-the-art
BIQA methods in terms of quality prediction accuracy, gen-
eralization ability, robustness (i.e., across-database prediction
capability) and computational complexity. Encouraged by the
state-of-the-art BIQA results obtained in this paper, in future
work we will investigate how to use the GM and LOG features
for blind local quality map estimation, which is a very useful
yet very challenging research problem.
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